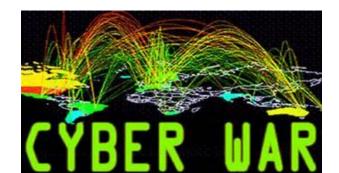


Cyber Resilience of Mobile Systems in an Age of Accelerating Change


Linton Wells II

Avascent Senior Advisor

November 16, 2018

© 2018 linwells@gmail.com, +1.202.436.6354

Outline

- Presentation is divided into 4 parts
 - What is resilience and how do you build it?
 - The "Age of Accelerations"
 - Planning and engineering for resilience
 - Cyber resilience of mobile systems

Definition of Resilience

- Not just bouncing back to status quo ante
- Judith Rodin—former head, Rockefeller Foundation:
 - The capacity of any entity
 - an individual, a community, an organization, or a natural system
 - to prepare for disruptions, to recover from shocks and stresses,
 - and then to <u>adapt and grow</u> from a disruptive experience
- Two critical concepts—must be built by leadership
 - Organizational <u>capacity</u>
 - Ability to <u>adapt and grow</u>
- "Be prepared to bounce forward better"

A Profile of Resilience (Be Prepared to Bounce Forward Better)

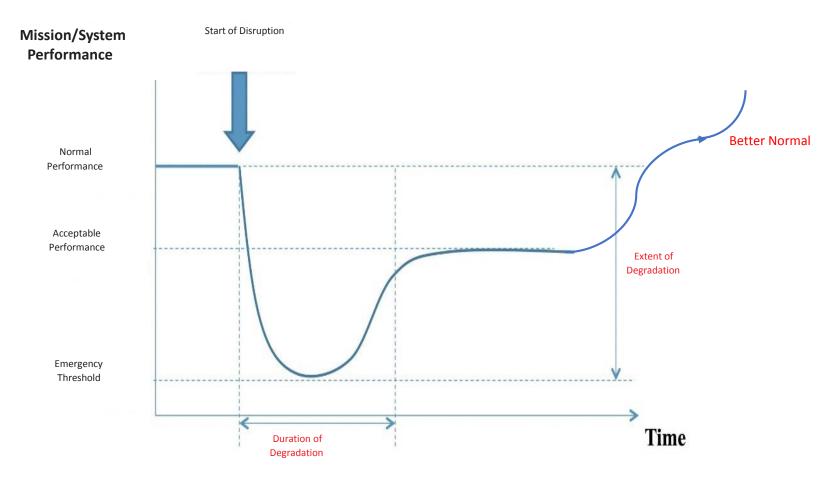


Figure 1. Conceptual diagram for measuring vulnerability and resilience (expanded from <u>KANG Shian Chin, et. al. (2014</u>); based on Richards, Ross, Shah, & Hastings, 2009

linwells@gmail.com, +1.202.436.6354

Security vs Resilience

- Security is about:
 - "locking up and hunkering down"
- Resilience is about:
 - Achieving organization's goals
 - Under any level of shock or stress
 - Fighting back
 - Emerging stronger

Mission Assurance

- DoD Mission Assurance concept is close to resilience
- Protection during
 - Program design
 - Life cycle (supply chain risk management, cyber & physical security, etc.), and
 - Decommissioning
- Goal is to absorb shocks, "fight hurt," and restore quickly
 - Not just by tactical approaches, but through
 - design
 - configuration control, and
 - rigorous training
 - at all levels

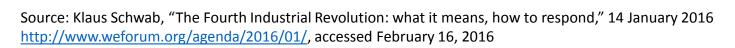
Cultural & Operational Resilience

- Cultural resilience: "maintain composure and keep fighting regardless of situation"
 - Culture must promote resilience--long term perspective
 - Resilient labor force key
- Operational (business) resilience: technology & systems
 - Cybersecurity makes networks & systems more resilient
 - Protect critical infrastructure
 - Use Cross-Functional Teams (CFT) across stovepipes
 - Engage proactively outside—cross-cutting collaboration

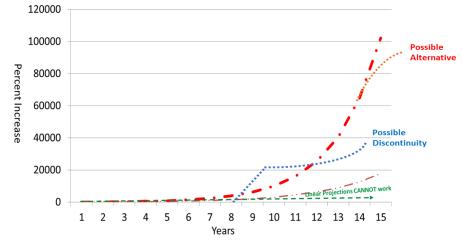
Age of Accelerations

Four Industrial Revolutions

- 1st ~1780s:
- 2nd ~1870:
- 3rd~1969:



 4th just beginning: fuse technologies "blur lines between physical, digital and biological spheres"



Velocity of Tech Change

If a factor, e.g. computing power/unit cost, doubles every 18 mo, 5 yr increase is 900%, 10 yr 10,000%, 15 yr ~100,000%

Growth in Computing Power per Unit Cost

Capability doubles every 18 months - - Capability doubles every 24 months - - -

Biotech even faster, robotics ubiquitous, nano poised breakout, energy impacts are global

 Think BRINE (bio-robo-info-nano-energy) + Additive Manufacturing & AI Interactions complicate things
Linear projections CAN'T work

Cyber Resilience

Key Points

- A cyber-resilient organization must be part of an organization that is resilient overall
- Cybersecurity contributes to cyber resilience, but cyber resilience is much broader
- Need to address more than just technical cyber issues—also consider cultural and information components

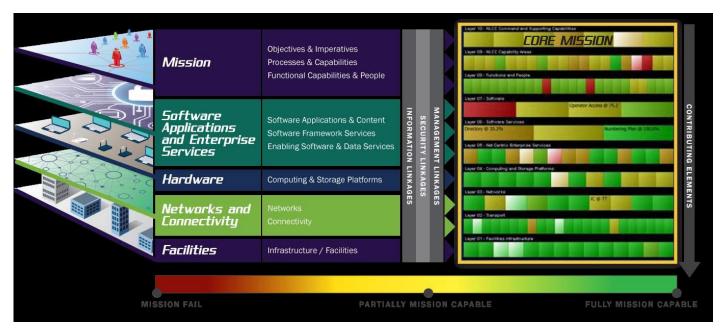
Cyber Attack Chain

cyberwarzone.com

OODA Loop & Decision Cycles

- "Observe" and "Orient" phases increasingly electromagnetic
- "Decide" and "Act" supported by information processing 0004
- Cyber can dominate OODA loop in all domains
- Tech changes
 - Processing power
 - Machine learning
 - Sensor proliferation
 - Army 2050 battlefield—can you move?
- Speed of decisions
 - "Human-on-the-loop," vice "Human-in-the-loop"

Image courtesy successing.com


Cyber Resilience Starting Points

- Malicious cyberspace activities typically include "5Ds:"
 - Deny; Disrupt; Degrade; Destroy; Deceive,
 - Increasingly combining with Information Operations and kinetic actions
- Types of attacks against control systems
 - Attacks on Human Machine Interface (HMI)—200+ vulnerabilities
 - Distributed Denial of Service (DDOS)
 - Moving to Destruction of Service (DeOS)
 - Remote penetration
 - Hardware/firmware modification
 - Supply chain vulnerability
 - Social engineering
 - Cleared insiders
- Must include both Operational Technology (OT) and Information Technology (IT)

Analytical Approaches

- System Criticality
 - How critical is a system to overall mission?
 - Consequence-based cybersecurity—don't spend time on inconsequential systems

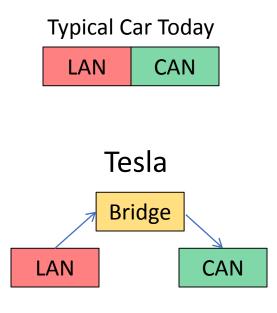
Know Mission Dependencies to Assure Mission

Figure 6: From: Haegley 2018, slide 26

linwells@gmail.com, +1.202.436.6354

Cyber Resilience of Mobile Systems

Components of Mobile Systems


- RF Interfaces
 - Radios, Radars, EW equipment—Cyber-EW convergence
 - Other sensors—tire pressure via Blue Tooth
 - ONSTAR and similar devices
 - Smart vehicle sensors
- Internal Networks
 - Infotainment LAN and CAN in cars
 - IT vs OT (generators, pumps, radars, etc.) in ships
 - 1553 and similar data busses in aircraft
- Control Systems
 - Steering, braking, "smart cruise control," etc. in cars
 - Navigation, steering and engine controls in ships
 - Command and Control systems
 - Flight controls and avionics
- Actuators
 - Electric, hydraulic, mechanical
- Patching mechanisms

Implementing Cyber Resilience

- Preparations/Mitigation
 - Mission Assurance-like life-cycle approaches
 - Resilient architectures
 - Including spectrum agility and GPS alternatives
 - Trained people—don't forget families
 - Culture of resilience
 - Public-private collaborative mechanisms, and trust, in place
- Near-Real-Time defenses
 - Situational Awareness
 - Decision support and command structure
 - Agile and protected components
 - Supporting C4I
- Post-attack reconstitution
 - "Bounce forward better" to the new environment

Automobile Example

Tesla security architecture shows there IS a secure alternative

Typical car today

- Mixes Infotainment LAN and vehicle control CAN (Controller Area Network)
- Multiple RF paths into LAN
- ➤ Hard to patch

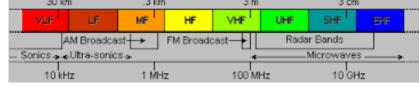
Tesla

- Separates LAN & CAN
- Crypto-secure bridge
- Over-the-air fixes

Can Tesla-like "wrapper" be applied to traditional SCADA systems?

20

20


Maritime Example

USN Approach (from TFCA)

- Boundary Control Points and Enclave Segregation
- Cyber Situational Awareness (SA):
- Designing (vice retroactively Patching-in) Resiliency within Systems & Networks:
- Cyber Hygiene: Use of focused Tactics, Techniques & Procedures (TTPs) and workforce training
- Cyber Ready Workforce: Improving manning levels, personnel training and Fleet readiness

Space-Related Considerations

- On-orbit components
 - Proliferating commercial systems add diversity, but likely less secure
 - Can diversify constellation faster
- Transmissions to/from the satellite
 - Don't get fixated on military systems
 - Disruption of GPS will have enormous civilian consequences
 - Spectrum agility

- Ground components (fixed and mobile)
 - Remember supporting components, like commercial power grids
 - Likely to include diverse components
- Cyber attack surface increasing in every area

Spectrum of Conflict

From Dr. Frank Hoffman, 2017

Organize, Train, Equip (1) Prepare for the War, Not Just the Battle

- Non-traditional missions
- Cognitive-Emotional Conflict
- Rapidly changing equipment
- Personnel skills in high demand by private sector
- Need multi-tiered training: leaders, techs, workers
- Difficult policy, ethical, and moral questions
 - Many legal issues—ambiguities in applying Law of Armed Conflict to cyberspace
 - No "rules of the road" for cyberespionage
 - Can only be addressed through bi-lateral and multi-lateral negotiations

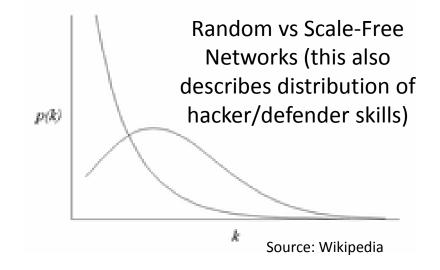
Organize, Train, Equip (2)

- Cyber capabilities cut across domains
 - Most techs don't look for cyber causes
 - Operating at policy-technology-sociology interface
- Cyber-EW convergence adds further complexity
 - Doctrinal differences, analog-digital equipment, etc.
- Conflicting exercise objectives
- Iterative approaches
- Cyberspace operations lend themselves to hybrid warfare and measures short of armed conflict
 - Cyber-on-cyber alone is rarely most effective

Opportunities

- Implement Boundary Control Points & Segmented Enclaves
- Deploy Cyber Secure Microgrids for key facilities
- Use *More Secure Codes/Components*, such as formal methods, new approaches to IoT security, and leveraging "cyber risk evaluations"
- Apply Near-Real Time Anomaly Detection
- Work toward an *Educated Workforce and Population*
- Incorporate Artificial Intelligence (AI) & Machine Learning (ML) effectively – including Explainable AI
- Target resources based on real world threat intelligence

Planning and Engineering for Resilience


- *Multi-Stakeholder* approach:
- Scenarios (set in context) foresight, vice forecasting
- In analyzing risk—consider:
 - Dependencies, including cross-sector vulnerabilities
 - Cascading casualties; and
 - Overall risk across all dimensions: Physical, Cyber, Human, Temporal
 - Can measure much of this quantitatively
- Examine stakeholder perceptions --adversary's likely to be different than ours
- Change behaviors through training, exercises, education and incentives
- ACT EARLY. Designing in is almost always better than adding on afterwards

Next Steps

- True talent is scarce
 - Recognize top group
- AI & Machine Learning
 - Bridge training shortfall
 - Be suspicious of hype

- Train, train, train—include tough scenarios
- Big data analytics—learn how to use it
- New personnel policies—get access to non-traditional talent
- Include OT-IT intersections

Questions Very Welcome

linwells@gmail.com

Skype: linwells U.S. cell +1 202.436.6354